Teste de polimento para rochas ornamentais silicáticas: métodos e resultados preliminares

Thiago Motta Bolonini

Bolsista Capacitação Institucional, Tecnólogo em rochas ornamentais, M. Sc.

Leonardo Luiz Lyrio da Silveira

Supervisor, Geólogo, D. Sc.

Resumo

Para colaborar com as pesquisas relacionadas ao polimento de rochas ornamentais silicáticas, este trabalho busca contribuir no desenvolvimento de um método de ensaio que permita avaliar a qualidade das superfícies beneficiadas. Para tanto, teste preliminares de polimento foram realizados e, de modo paralelo, foi realizada a inspeção por líquidos penetrantes. Tal procedimento revelou que a utilização dos líquidos penetrantes ser uma ferramenta útil à detecção e ao monitoramento de descontinuidades ao longo do processo de obtenção do brilho. O trabalho iniciado pode indicar configurações mais eficientes para o polimento de rochas ornamentais.

1. Introdução

Alguns trabalhos foram desenvolvidos no Brasil e no exterior com o enfoque na melhoria contínua da qualidade nas etapas de beneficiamento de rochas ornamentais gerando novas técnicas e tecnologias considerando variáveis operacionais e a influência das propriedades das rochas na qualidade da superfície polida (SILVEIRA et al. 2004; SILVEIRA, 2008; PARAGUASSÚ et al. 2004; NEVES, 2010; CAMARGO, 2013; HUANG, XU, 2004; YAVUZ, OZKAHRAMAN, DEMIRDAG, 2011; GÜRCAN, GOKTAN, YILDIZ, 2013). A função do polimento é conferir brilho às superfícies das rochas, além de auxiliar no fechamento dos poros. No entanto, vibrações e pressões podem gerar efeitos contrários em algumas configurações operacionais. Diante desta possibilidade, testes de detecção de descontinuidades com líquidos penetrantes e reveladores visíveis foram realizados, de forma paralela aos testes de polimento, para avaliar o nível de detecção das descontinuidades em rochas polidas por empresas do setor.

2. Objetivos

Auxiliar no desenvolvimento de um método de ensaio para simulação do polimento de rochas ornamentais silicáticas com o intuito de estabelecer parâmetros que permitam a avaliação das superfícies beneficiadas em função das configurações operacionais inerentes ao processo de obtenção do brilho.

3. Materiais e Métodos

Para os testes de polimento foram utilizados 49 corpos de prova, de 60 cm x 60 cm x 2 cm, do litotipo conhecido comercialmente como Cinza Castelo (CC), Figura 1 A, monzogranito equigranular, isotrópico e de granulação fina, com cristais entre 1 mm e 4 mm, graus de microfissuramento e alteração nulos à observação macroscópica,

composto por feldspato potássico (30%), plagioclásio (26%), quartzo (25%) e biotita (19%). Também foram utilizados: equipamento (em fase de patenteamento pelo CETEM NR-ES) para simular diferentes configurações operacionais, além das praticadas na indústria; rebolos abrasivos resinóides (24 e 60 mesh) e magnesianos (120, 220, 400, 600, 800, 1200 mesh e abrasivo de lustro); medidor de brilho *micro-TRI-gloss* (BYK) e rugosímetro *Talysurf series i60* (Taylor Hobson) com range de 1 mm e deslocamento transversal de 60 mm. As configurações definidas foram marcadas nos corpos de prova sob a forma de um padrão alfanumérico de organização correspondente aos parâmetros litotipo (CC), número de ciclos (1, 2, 3, e 4), velocidade de rotação (300, 400, 500 e 700 RPM) e carga do satélite (1, 2, 3 e 4 Bars). A sequência de abrasivos e a vazão da água (15 l/min) foram registradas nas planilhas de acompanhamento. O primeiro desgaste nas rochas foi feito com os abrasivos 24 e 60 mesh (configurações: rotação 500 RPM, carga 1 Bar e 4 ciclos). A medição do brilho, quando concluídas todas as 7 granulometrias de abrasivos, totalizará 10.290 pontos, considerando as 49 diferentes configurações operacionais previamente definidas, enquanto que as medições de rugosidade serão feitas ao final dos testes, ou seja, após o lustro. Para testar a aplicabilidade do líquido penetrante na identificação de microdescontinuidades foram selecionados 6 rochas ornamentais, Figura 1B a 1G. Nestes testes prévios, foram utilizados 9 corpos de prova (10 cm x 10 cm x 2 cm) por rocha, totalizando 63 unidades.

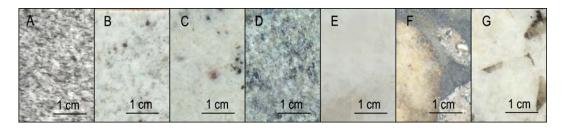


Figura 1. Rochas utilizadas para os testes: A) Cinza Castelo; B) Branco Himalaya, C) Branco Caravelas; D) Verde São Francisco, E) Lumix, F) Aguarela do Brasil, G) Branco Galaxy.

O Branco Himalaya (BH) é um monzo a sienogranito, com textura equigranular média, cristais de 1 mm a 3 mm, sem fraturas visíveis à vista desarmada, composto por FK (35%), Qtz (30%), Pl (25%), Bt (3%) e Grt (2%). O Branco Caravelas (BC) é um monzogranito, com textura inequigranular média/grossa, cristais de 3 mm a 10 mm, composto por FK (40%), Qtz (30%), Pl (20%), Bt (3%) e Grt (2%). O Verde São Francisco (SF) é um charnockito, com textura equigranular média, cristais variando de 1 mm a 3 mm, com estrutura de fluxo visualizada em chapas, sem fraturas macroscopicamente visíveis, composto por FK (45%), Qtz (30%), Pl (20%), máficos (5%) e Grt(1%). O Lumix (LM) é um quartzolito com mais de 90% de Qtz, intensamente fraturado, com fraturas abertas e outras preenchidas por Qtz leitoso. O Branco Galaxy (BG) é um pegmatito, de composição álcali-feldspática, textura inequigranular, cristais de granulação fina a muito grossa, pouco fraturado, composto por FK (65%), Qtz (30%), Grt (3%) e máficos (2%). O Aquarela do Brasil (AB) é um metaconglomerado composto por clastos polimíticos mal selecionados, cujas dimensões variam de 1,6 cm a 11,5 cm e matriz com cimento silicático de coloração negra. Para os testes foram, ainda, utilizados uma câmera fotográfica (Nikon Coolpix P520 - resolução de 16 Mp), 1 frasco de líquido penetrante (LP); 1 frasco de removedor; 1 frasco de revelador (R) e recortes de pano. Para as amostras submetidas à impregnação por líquido penetrante foi definida uma identificação

alfanumérica contento informações acerca do litotipo (BH, BC, LM, BG e AB), dos reagentes (LP, R) e os tempos de exposição (5, 10 e 15 min). Como a identificação das descontinuidades é visual, as rochas foram fotografadas antes e após a aplicação do LP e do R. Na execução do ensaio, os corpos de prova foram limpos e o LP foi aplicado, secando conforme os tempos estipulados e, após isto, fotografados. A etapa posterior foi a aplicação do R sobre os corpos de prova que, após os tempos de exposição determinados, foram novamente fotografados para verificar quais amostras melhor mostravam tais descontinuidades.

4. Resultados e Discussão

Da sequência granulométrica definida para os testes foram realizados os polimentos com as granulometrias 24, 60, 120 e 220 mesh. Os valores de brilho (máximo 1,9 GU e mínimo 1,4 GU) para o abrasivo 120 mesh, foram obtidos com as configurações CC2C2 (2 ciclos, 700RPM, 2 Bar) e CC2A1 (2 ciclos, 300 RPM, 1 Bar), respectivamente. Os valores de brilho (máximo 2,5 GU e mínimo 1,3 GU) para o abrasivo 220 mesh, foram obtidos com as configurações CC3C3 (3 ciclos, 700 RPM, 3 Bars) e CC2A2 (2 ciclos, 300 RPM, 2 Bars), respectivamente. Os desvios-padrão dos valores de brilho calculados (120# = 0,1 e 220# = 0,3) indicam suas dispersões no ensaio. Valores de desvio-padrão muito próximos de zero indicam que modificar as configurações do teste pode ser irrelevante. Em contrapartida, quanto maior for o valor do desvio-padrão, maior deverá ser o grau da importância dada às modificações dos parâmetros na máquina.

No tocante à inspeção com os líquidos penetrantes, são elencadas a seguir as configurações de tempo de exposição ao LP e ao R, que foram mais eficientes, ao analisar as fotografias, na demarcação das descontinuidades: BC (LP 15 min., R 10 min.), Figura 2A2, maior contraste entre R e LP devido à fina espessura da camada de revelador aplicada; BH (LP 5 min., R 5 min.), Figura 2B2, demonstrou melhor a real condição de fissuramento do litotipo demarcando descontinuidades com cerca de 1 mm, o que, pela quantidade, pode fazer com que a superfície ganhe o aspecto rosado; SF (LP 5 min., R 5 min.), Figura 2C2, demarcação, sem borrões, de descontinuidades com até 2 cm de comprimento; LM (LP 5 min., R 5 min.), Figura 2D2, embora bastante fraturado, a maioria das fraturas estão preenchidas por Otz leitoso. Contudo, as fraturas abertas são perfeitamente demarcadas na superfície, AB (LP 5 min., R 15 min.), Figura 2E2, apresenta descontinuidades nos contatos entre a matriz e os clastos; no BG (LP 5 min., R 5 min.), Figura 2F2, foi possível detectar, fraturas de borda de grão, intragranulares e transgranulares.

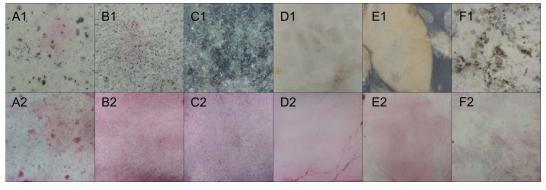


Figura 2. Corpos de prova ao natural (1) e após (2) a aplicação do líquido penetrante e do revelador.

5. Conclusão

A continuação dos testes é importante, pois pode indicar configurações mais eficientes para polimento de rochas ornamentais. Sabe-se que o desvio padrão dos valores de brilho indicará, para cada granulometria de abrasivo, a importância a ser dada a uma determinada configuração de teste com valor de brilho máximo em detrimento das outras. Nos testes com líquidos penetrantes, foi possível perceber que o tempo de exposição ao líquido penetrante (5 min.) foi decisivo para a demarcação das descontinuidades e que sua utilização pode ser útil na avaliação da qualidade das superfícies durante os testes de polimento.

6. Agradecimentos

Ao CNPQ (proc. n° 313857/2014-8), ao CETEM, NR-ES e à Itamil – Itapemirim Mecânica Industrial, Ltda.

7. Referências Bibliográficas

CAMARGO, J. L. Influência das propriedades petrográficas na qualidade do polimento de rochas ornamentais. 2013. 201p. Dissertação (Mestrado) – Instituto de Geociências e Ciências Exatas do Campus de Rio Claro, Universidade Estadual Paulista Júlio de Mesquita Filho, Rio Claro, São Paulo (Brasil).

NEVES, M. C. Estudo experimental do polimento de diferentes "granitos" e as relações com a mineralogia. 2010. 115p. Dissertação (Mestrado). Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, São Paulo (Brasil).

PARAGUASSÚ, A. B.; RODRIGUES, J. E.; RIBEIRO, R. P.; SILVEIRA, L. L. L. Considerações sobre o desgaste abrasivo no beneficiamento de rochas ornamentais. In: XLII CONGRESSO BRASILEIRO DE GEOLOGIA, 2004, Araxá, Minas Gerais (Brasil).

SILVEIRA, L. L. L. Polimento de rochas ornamentais: um enfoque tribológico ao processo. Livr, 1 ed. Curitiba-Paraná, Editora Pós-Escrito, 2008, 203p.

SILVEIRA, L. L.; RODRIGUES, J. E.; ARTUR, A.C. Integrated analysis of the mineralogical, geothecnical and operational variables on the polishing of dimension stones. In: XXXII INTERNATIONAL GEOLOGICAL CONGRESS, 2004, Firenze (Italy).

YAVUZ, H.; OZKAHRAMAN, T.; DEMIRDAG, S. Polishing experiments on surface quality of building stone tiles. **Construction and Building Materials**. v. 25, p. 1707-1711, 2011.

GÜRCAN, S.; GOKTAN, R. M.; YILDIZ, A. Effect of mineralogical and microstructural properties on surface roughness and gloss of some ornamental marbles subjected to polishing process. **X-Ray Spectrometry**. v. 43, p. 70-78, 2014.

HUANG, H.; XU, X.P. Interfacial interactions between diamond disk and granite during vertical spindle grinding. **Wear.** v. 256, p. 623-629, 2004.