PRODUÇÃO DE FERTILIZANTES A PARTIR DE REJEITOS DE CORTE DE GRANITO

Wallace Figueiredo de Mendonça

Graduando em Química, 6.º período, Fundação Técnico-Educacional Souza Marques PIBIC/CETEM: julho de 2011 a julho de 2012,

wmendonca@cetem.gov.br

Regina Coeli Casseres Carriso

Orientadora, Eng. Metalúrgica, D.Sc. rcarriso@cetem.gov.br

Marisa nascimento

Orientadora, Eng. Química, D.Sc. marisa@cetem.gov.br

1. INTRODUÇÃO

Rochas ou minerais que apresentem teores elevados de potássio podem ser fontes alternativas potenciais para produção de sais de potássio e/ou de termofosfatos potássicos ou ainda para aplicação direta nos solos como fertilizantes de potássio de solubilização lenta. Dentro desses exemplos encontram-se os rejeitos do corte de granitos. Embora o material seco, isto é, o pó, não é juridicamente classificado como um resíduo perigoso, a sua dispersão pelo vento ou água causaria efeitos ambientais indesejáveis e esta é um das razões para o grande interesse na sua reutilização (BARRAL SILVA et al, 2005).

2. OBJETIVOS

Neste projeto objetivou-se estudar de forma preliminar o rejeito do corte de granito, originário do Estado do Espírito Santo como potencial fonte de potássio.

3. METODOLOGIA

Para este projeto, as seguintes metodologias foram testadas de forma preliminar para a avaliação das potenciais rotas de produção de fertilizante potássico:

• Rota 1 (MAZUNDER et al 1993) – Uma massa 30 g de amostra foi misturada com CaCl₂ em cadinho de porcelana. A mistura foi aquecida em forno mufla e depois resfriado e pesado. Uma amostra de cada teste (Tabela 1) foi enviada para Raio X. A avaliação do potássio liberado foi realizado de acordo com os procedimentos descritos por Nicolini (2009). Uma amostra de 5 g da mistura preparada calcinada foi lixiviada com 50 mL de solução de ácido clorídrico 0,05 N + ácido sulfúrico 0,025 N (Método de Mehlich 1). Após 5 minutos de contato sob agitação em mesa agitadora, filtrou-se o material e secouse em estufa por 24 hrs. O licor resultante foi levado para análise do potássio extraído.

• Rota 2 (NASCIMENTO, 2004) - Uma massa da amostra foi lixiviada em autoclave nas condições descritas na Tabela 2. Após o término do experimento a mistura reacional foi filtrada e o licor separado para análise. O sólido resultante foi lavado com dois litros de água destilada, seco em estufa a 60 graus por 24 horas e pesado. Uma amostra de cada teste foi enviada para Raio X.

Tabela 1 – Testes referentes à Rota 1.

Teste	Massa de CaCl ₂ (g)	Tempo de forno(h)	Temperatura de forno (°C)
1	30	1	900
2	10	1	900
3	30	3	900
4	10	3	900
5	30	1	1200
6	10	1	1200
7	30	3	1200
8	10	3	1200

Tabela 2 – Testes referentes à Rota 2.

Teste	Temp.	Tempo (h)	Agit. (RPM)	S/L (g/mL)	Conc. NaOH (mol/L)
1	100	2	100	30/100	1
2	200	2	100	30/200	3
3	100	4	100	30/100	3
4	200	4	100	30/100	3
5	100	2	300	30/100	3
6	200	2	300	30/200	1
7	100	4	300	30/200	1
8	200	4	300	30/200	1

4. RESULTADOS E DISCUSSÃO

A amostra original consistia principalmente de muscovita, quartzo e feldspatos potássicos, principalmente tipo microclínio e ortoclásio. De acordo com a análise química da rocha, esta continha cerca de 3,4% de potássio.

Os resultados para a Rota 1 mostram que, a partir dos valores de análise química foi possível calcular a extração de potássio para cada teste que variou entre 33 e 70%, como disponível na Tabela 3 e, com auxílio do software Statistica 9.0, foi possível avaliar a influência das variáveis de síntese e pode-se verificar que a massa de CaCl₂ foi a variável mais importante. Essas extrações foram acompanhadas pela formação de uma nova fase cristalina, a anortita.

Os resultados para a Rota 2 mostram que, no caso da lixiviação com NaOH, os testes 2 e 4 foram os que apresentaram maiores recuperações, 64 e 30% respectivamente. Essas extrações foram acompanhadas pela formação de fases zeolíticas tais como hidroxicancrinita. Os resultados para o cálculo dos efeitos das variáveis, mostram que a razão S/L, a concentração de NaOH e a agitação apresentaram maior importância.

Tabela 3- Resultados para avaliação da Rota 1

Tabela 4 – Resultados para avaliação da Rota 2

	Calcinação	K	% de
Teste	Massa final	trocável	extração
	(g)	Massa	de K

Teste	Temp. (C)	Tempo(h)	Agit.	S/L	Conc. NaOH	% K
1	100	2	100	30/100	1	1,47

		final (g)	
1	52,37	2,8605	50,62
2	35,70	3,9870	38,50
3	47,42	2,8200	69,74
4	33,83	4,0446	33,17
5	46,22	2,9174	67,97
6	36,22	4,0089	46,16
7	39,80	3,6280	70,26
8	29,92	4,6011	58,67

2	200	2	100	30/200	3	64,08
3	100	4	100	30/100	3	0,10
4	200	4	100	30/100	3	30,26
5	100	2	300	30/100	3	3,26
6	200	2	300	30/200	1	9,11
7	100	4	300	30/200	1	3,50
8	200	4	300	30/200	1	8,61

Assim, pelos resultados dos testes preliminares, realizados com a rocha potássica originária do corte de granito é possível concluir que a rota de calcinação com CaCl₂ parece ser a técnicamente mais promissora. É recomendado que esta seja estudada mais profundamente para sua otimização.

4 AGRADECIMENTOS

Os autores agradecem ao CETEM pela infraestrutura laboratorial oferecida, ao CNPq pelo suporte financeiro.

REFERÊNCIAS BIBLIOGRÁFICAS

BARRAL SILVA M.T., SILVA HERMO, B., GARCIA-RODEJA E., VÁZQUEZ FREIRE, N.. Reutilization of granite powder as an amendment and fertilizer for acid soils, Chemosphere. v. 61, pp.993-1002 2005.

MAZUNDER, A.K., SHARMA, T., RAO, T.C. Extraction of potassium from glauconitic sandstone by roast-leach method, Intern. J. of Min. Proc., vol. 38, pp. 111-123 1993.

NASCIMENTO, M. Desenvolvimento de método para extração de potássio a partir de feldspato potássico, D.SC., COPPE-UFRJ 2004.

NICOLINI, K.P., **Produção** de fertilizantes de liberação lenta a partir da torta de mamona (*ricinus comunis*) e de uréia intercalada em caulins. D.Sc., UFPR, 2009.