CARACTERIZAÇÃO MINERALÓGICA DE "FOSFATOS NÃO APATÍTICOS": DADOS PRELIMINARES

Pedro Henrique Calçada de Medeiros

Aluno de Graduação da Geologia, 5º período, UFRJ Período PIBIC/CETEM: julho de 2011 a julho de 2012 pmedeiros@cetem.gov.br

Reiner Neumann

Orientador, Geólogo, D.Sc. rneumann@cetem.gov.br

Fabiano Richard Leite Faulstich

Coorientador, Geólogo, M.Sc. ffaulstich@cetem.gov.br

1. INTRODUÇÃO

O fósforo é um dos principais elementos macronutrientes para as plantas, sendo fundamental no processo de fotossíntese (LINS e LUZ, 2008). No Brasil, um dos maiores países do mundo em produção agrícola, há uma grande demanda por fertilizantes fosfatados devido à falta de nutrientes em seus solos. As principais jazidas brasileiras do elemento são geneticamente relacionadas a carbonatitos, onde o carreador do fósforo com interesse econômico é a fluorapatita, mas boa parte do elemento pode ser encontrada nos minerais do grupo da plumbogummita, que formam os "fosfatos não-apatíticos". A fórmula geral dos minerais do grupo é $DAl_3(PO_4)_2(OH,H2O)_6$, onde o sítio D é ocupado principalmente por Ca, Ba, Sr, Th, Pb e elementos terras raras (ETR) leves.

2. OBJETIVOS

Amostras de minerais do grupo da plumbogummita foram estudadas visando melhor entendimento sobre a sua mineralogia, em função de sua importância para os minérios fosfáticos. Espera-se que, como consequência, se possa ter quantificação de fases mais precisa. Finalmente espera-se determinar uma assinatura espectroscópica Raman para o reconhecimento de minerais do grupo da plumbogummita.

3. METODOLOGIA

Foram estudadas uma amostra oriunda do carbonatito do Barreiro (Araxá – MG) e outra não relacionada a carbonatitos, proveniente de Piumhi – MG, cedida pelo Museu Nacional da UFRJ, nomeadas como GA-03 e MN-01, respectivamente. Uma pequena quantidade foi separada e pulverizada em gral de ágata. As montagens do pó foram estudadas por difração de raios-X (DRX) em um equipamento Bruker-AXS D4 Endeavour com radiação Co kα. Outra alíquota foi embutida em epóxi, desbastada e polida usando-se exclusivamente diamante, recoberta com carbono e analisada em microscópio eletrônico de varredura acoplado a um espectrômetro de energia dispersiva de raios-X (MEV/EDS). Usou-se um MEV FEI Quanta 400, operado a 20 kV e spot size 5 em alto vácuo, e EDS Bruker Quantax 800 com detector SDD XFlash 4030, para obter análises químicas pontuais, recalculadas para a fração molar da ocupação do sítio D do grupo da plumbogummita, baseando-se em 2 fósforos. Visando complementar os estudos, cada ponto analisado por EDS foi estudado também por microespectroscopia Raman, após novo polimento para a remoção da camada de carbono. Uma espectro inicial, com laser a 488 nm, indicou que apenas o laser a 785 nm, entre os disponíveis, não geraria fluorescência excessiva, e os espectros foram obtidos com excitação neste comprimento de onda, em equipamento Horiba LabRam HR.

2012 - XX – Jornada de Iniciação Científica-CETEM

4. RESULTADOS E DISCUSSÃO

4.1 Difração de Raios-X

Somente a amostra GA-03 foi analisada por DRX, pela quantidade insuficiente de material da MN-01. Predomina um mineral do grupo da plumbogummita, além de gibbsita (Figura 1).

Figura 1 – DRX da amostra GA-03, com mineral do grupo da plumbogummita predominante e gibbsita como contaminante.

4.2 Análises químicas pontuais por MEV/EDS

As análises químicas pontuais das amostras GA-03 e MN-01, e o recálculo para frações molares considerando os termos extremos mais importantes, foram reproduzidas nas Tabelas 1 e 2, respectivamente.

Observa-se que a fração molar de gorceixita, com bário predominante no sítio D, se apresenta como o mais abundante, seguida da goyazita (Sr), e crandallita (Ca). A florencita é sempre subordinada. Entretanto, no ponto 10 da amostra GA-03 predomina goyazita, e o ponto 7 contém uma quantidade considerável de florencita (13%) se comparada às outras análises.

	1	2	3	4	5	6	7	8	9	10	
Al_2O_3	28,3	27,0	27,0	28,0	28,1	27,2	30,8	26,8	27, 9	30,3	
P_2O_5	29,9	26,9	28,1	29,0	28,9	27,6	26,2	27,6	28,9	29,8	
CaO	0,7	0,8	0,8	1,1	1,2	0,7	0,7	1,1	1,7	1,0	
BaO	12,8	20,2	19,7	15,5	16,2	14,3	15,0	15,7	14,7	12,2	
Ce_2O_3	0,5	0,9	0,2	0,8	0,7	0,5	2,4	0,1	0,0	0,2	
La_2O_3	0,2	1,3	0,4	0,4	0,4	1,3	1,6	0,8	0,4	0,5	
Pr_2O_3	0,0	0,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	
Nd_2O_3	0,0	0,2	0,0	0,0	0,0	0,0	0,2	0,0	0,0	0,0	
SrO	9,2	5,9	5,9	7,8	7,7	8,0	6,1	8,4	9,7	9,6	
Fe ₂ O ₃	4,6	3,3	3,4	3,9	3,6	5,2	2,3	4,8	3,8	3,3	
SiO ₂	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	
SO ₃	1,3	1,1	1,3	0,9	0,9	2,8	2,4	2,4	0,6	0,9	
Gorceixita	0,44	0,60	0,63	0,50	0,51	0,48	0,50	0,49	0,43	0,41	
Goyazita	0,47	0,26	0,28	0,37	0,36	0,40	0,30	0,39	0,42	0,48	
Crandallita	0,07	0,07	0,07	0,10	0,10	0,06	0,07	0,07	0,13	0,09	
Florencita	0,02	0,07	0,02	0,04	0,03	0,06	0,13	0,03	0,01	0,02	
Total	0,9	1,15	1,03	1,00	1,02	0,99	1,05	1,08	1,09	1,92	

Tabela 1. Análises químicas pontuais da amostra GA-03, e fração molar dos principais membros do grupo da plumbogummita.

	1	2	3	4	5	6	7	8	9
Al ₂ O ₃	32,4	31,1	31,8	29,1	30,6	27,2	31,2	31,3	32,2
P_2O_5	22,4	20,3	20,4	19,5	20,9	19,5	20,8	22,0	21,0
CaO	1,5	1,1	1,3	1,1	1,4	1,0	1,4	1,2	1,2
BaO	12,2	14,3	12,2	11,9	12,7	14,3	12,4	11,7	11,1
Ce_2O_3	0,0	0,0	0,2	0,4	0,0	0,0	0,2	0,0	0,0
La_2O_3	0,0	0,5	0,3	0,4	0,4	0,6	0,3	0,0	0,0
Pr_2O_3	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Nd_2O_3	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
SrO	4,8	4,3	4,1	3,9	4,0	3,9	4,3	4,4	4,3
Fe ₂ O ₃	5,3	7,2	7,5	12,4	8,6	14,7	7,9	8,4	7,7
SiO ₂	9,1	8,9	9,8	8,8	9,2	6,4	9,3	8,6	10,1
Gorceixita	0,52	0,59	0,54	0,55	0,55	0,61	0,54	0,55	0,53
Goyazita	0,30	0,26	0,27	0,27	0,26	0,25	0,28	0,31	0,31
Crandallita	0,17	0,12	0,16	0,14	0,17	0,12	0,16	0,15	0,16
Florencita	0,00	0,03	0,02	0,04	0,02	0,03	0,02	0,00	0,00
Total	0,96	1,10	1,02	1,02	1,02	1,12	1,02	0,90	0,92

Tabela 2. Análises químicas pontuais da amostra MN-01, e fração molar dos principais membros do grupo da plumbogummita.

A Figura 2 representa a composição dos minerais do grupo da plumbogummita analisados, em frações molares dos seus constituintes principais, numa diagrama tetraédrico.

Figura 2: Composição molar dos pontos analisados (vermelho: GA-03, roxo: MN-01).

4.3 Microespectroscopia Raman

O espectro de emissão do ponto 01 da amostra GA-03, com excitação pelo laser azul (488 nm), mostra forte fluorescência até aproximadamente 800 nm, indicando que o único laser de excitação passível de gerar resultados, entre os disponíveis, é o de 785 nm (Figura 3). A fluorescência da amostra MN-01 foi mais intensa, e nem com excitação no infra-vermelho próximo foi possível gerar bons espectros. Os espectros da amostra GA-03 foram obtidos de 100 a 2000 cm⁻¹, janela na qual , segundo Breitinger et al. (2006), estão marcadas as bandas dos minerais do grupo da plumbogummita.

Figura 3 – Fluorescência observada com a excitação de 488 nm, ponto 01, amostra GA-03. 2012 - XX – Jornada de Iniciação Científica-CETEM

Os espectros Raman de todos os pontos analisados foram muito similares, alguns deles reproduzidos na Figura 4. Segundo trabalhos de Frost et. al (2011), Breitinger et al. (2006) e Grey et al. (2011), todas as vibrações são relacionadas ao grupo PO₄. Provavelmente a variação composicional não permite distinção clara entre os pontos analisados, apesar de pequenas diferenças entre os espectros que ainda estão sendo avaliadas.

Figura 4 - Espectros Raman de alguns pontos da amostra GA-03

5. AGRADECIMENTOS

Agradeço ao CETEM por ceder sua estrutura para realização do projeto, ao CNPq pela bolsa concedida durante a pesquisa e aos técnicos do SCT (Setor de Caracterização Tecnológica) por auxiliar na preparação das amostras. Da mesma forma, agradeço ao pesquisador Fabiano Faulstich pela supervisão durante o processo de espectrometria Raman, ao meu orientador, Dr. Reiner Neumann por todo conhecimento passado a mim, o que foi fundamental para o sucesso do trabalho, e ao amigo Hélisson Nascimento pelo auxílio incansável durante todas as etapas do projeto.

6. REFERÊNCIAS BIBLIOGRÁFICAS

BREITINGER, D.K; BREHM, G; COLOGNESI, D.; PARKER, S.F.; STOLLE, A.; PIMPL, TH. H.; SCHWAB, R. G. Vibrational spectra of synthetic crandallite-type minerals – optical and inelastic neutron scattering spectra. **Journal of Raman Spectroscopy**, 37, p. 208 – 216, 2006.

FROST, R. L.; XI, Y.; PALMER, S. J.; POGSON, R.. Vibrational spectroscopic analysis of the mineral crandallite $CaAl_3(PO_4)_2(OH)_5.(H_2O)$ from the Jenolan Caves, Australia. **Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy**, 82, p. 267 – 275, 2011.

GREY, I.E., SHANKS, F.L., WILSON, N.C., MUMME, W.G., AND BIRCH, W.D. Carbon incorporation in plumbogummite-group minerals. **Mineral Magazine**, 75(1), p. 145-158, 2011.

LINS, F. A.; LUZ, A. B.; **Rochas & minerais industriais: usos e especificações**. In: LOUREIRO, F. E. L. et al. Argilominerais – Fosfato. 2 ed.Centro de Tecnologia Mineral, Rio de Janeiro, RJ, 2008, p.141-175.