TEORES DE ARSÊNIO EM MATERIAL PARTICULADO ATMOSFÉRICO NO MUNICÍPIO DE PARACATU (MG)

LETÍCIA DO NASCIMENTO SILVA

Aluna de Graduação da Eng. Ambiental - 5º período, UFRJ Período PIBIC/CETEM : agosto de 2012 a julho de 2013, lnsilva@cetem.gov.br

ZULEICA CARMEM CASTILHOS

Orientadora, Farmacêutica, D.Sc. zcastilhos@cetem.gov.br

LÍLIAN IRENE DIAS DA SILVA

Coorientadora, Química Analítica, M.Sc. lidias@cetem.gov.br

1. INTRODUÇÃO

Este estudo integra o projeto "Avaliação da Contaminação Ambiental por Arsênio e Estudo Epidemiológico da Exposição Ambiental Associada em Populações Humanas de Paracatu-MG", coordenado pelo CETEM em parceria com outras instituições de pesquisas.

Paracatu, município localizado no noroeste do Estado de Minas Gerais, tem como principais atividades econômicas a agropecuária e a exploração de minérios, incluindo o ouro, chumbo e zinco. No caso da mineração de ouro, que em Paracatu é a céu aberto, é importante conhecer os teores de arsênio (As) associado ao total do material particulado atmosférico em suspensão (PTS), pois é um elemento classificado como cancerígeno humano (IRIS, 2013) e suas principais vias de exposição ambiental são a ingestão de águas e a inalação.

2. OBJETIVO

Determinar, através do método adaptado Method IO-3.1 da US EPA, os teores de As em PTS no município de Paracatu, em filtros oriundo de 8 distintas estações de amostragem, no período de maio de 2011 a abril de 2012 (12 meses).

3. METODOLOGIA

Foram recebidos na COAM/CETEM, 96 filtros de fibra de vidro, oriundos dos 8 amostradores, medindo 10" x 8" (25,40 cm x 20,32 cm). Esses filtros foram dobrados ao meio no sentido do comprimento, e com auxílio de um estilete foram cortadas duas tiras de 1" x 8" (para análise em duplicata). Em seguida, cada uma dessas tiras foi cortada em pequenos pedaços de cerca de 1 cm de largura, que foram empilhados e posicionados no fundo de um tudo de centrífuga de polipropileno de 50 mL, previamente pesado e identificado de acordo com o filtro. As massas das tiras foram determinadas pela aferição das massas dos tubos antes e depois da colocação das mesmas. Foram adicionados 10 mL de mistura ácida (HCl 16,75% e HNO₃ 5,55%), e as amostras foram então submetidas a banho ultrassônico por 3 horas, à temperatura de 70°C.

Após as 3 horas de extração, as amostras foram arrefecidas à temperatura ambiente, e então foram adicionados 10 mL de água ultrapura. Cada tubo foi, então, agitado em agitador tipo vórtex por 2 minutos, para completar a extração e, em seguida, centrifugado por 5 minutos. Após repouso de aproximadamente 16 h ("overnight"), o sobrenadante foi filtrado em membrana de Nylon de 0,45 µm de poro e 26 mm de diâmetro da Millipore, para tubo de

polipropileno de 14 mL, também previamente identificado de acordo com o número da amostra. O As foi determinado pela técnica da espectrometria de emissão ótica com plasma indutivamente acoplado (ICP-OES), num equipamento da Horiba, modelo Ultima 2.

4. RESULTADOS E DISCUSSÃO

Os amostradores de MPS, do tipo "high-vol", estão distribuídos no município conforme mostrado na Figura 1. As condições climáticas do município durante o período de amostragem (maio de 2011 a abril de 2012) indicam que a direção predominante do vento é a de nordeste (NE), com velocidade média mensal entre 2,8 e 4,4 m s⁻¹, sendo maior no período seco (Matos et al., 2013).

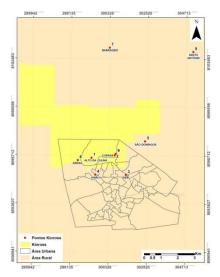


Figura 1. Mapa de amostragem em Paracatu, em destaque, a área urbana e divisão censitária.

O método citado para a análise do arsênio foi validado através de testes de adição e recuperação com solução padrão contendo arsênio e com adição de material de referência certificado (MRC) SMR NIST 1648 a em filtros brancos, obtendo-se 97,5% de recuperação para o filtro branco com padrão contendo arsênio, e 90% para o filtro branco com o MRC. O limite de detecção em µg mL⁻¹ calculado para o arsênio foi de 0,0075, e em ng m⁻³ foi de 0,64.

Os resultados obtidos de teores de As no PTS atmosférico em todos os filtros amostrados estão mostrados na Tabela 1 e os valores médios nos diferentes amostradores estão na Tabela 2. De um modo geral, os teores médios de As em áreas urbanas encontram-se de 5 a 7 ng m⁻³ (Maggs, 2000). Para avaliação de riscos à saúde humana por exposição ao As na atmosfera, via inalação, os teores médios referenciais para o incremento de riscos cancerígenos aceitáveis (incremento de um caso de câncer para cada 1.000.000 ou 100.000 de expostos) variam de 0,6 ng m⁻³ a 6 ng m⁻³ (IRIS, 2013). Sendo assim, a concentração média de As se encontra dentro do esperado para área urbana, mas acima do recomendado para prevenção de risco à saúde.

Tabela 1. Teores de arsênio em material particulado atmosférico em suspensão em cada filtro amostrado (N=12) em cada amostrador.

Ponto	Local	Parâmetro	Filtro	Data	As (ng m ⁻³)
1	Alto da Colina		3022	01/05/2011	7,1
			3077	11/06/2011	< 0,64
			3118	11/07/2011	18,8
			3155	04/08/2011	13,6
		PTS	3228	15/09/2011	13,3
		F15	3282 21/10/2011	< 0,64	
			3333	26/11/2011	2,0
			3342	02/12/2011	4,7
			3415	19/01/2012	0,73
			3449	12/02/2012	5,1

			3502	19/03/2012	2,9
			3552	24/04/2012	5,5
			3047	24/05/2011	4,4
			3067	04/06/2011	< 0,64
			3127	17/07/2011	< 0,64
			3188	22/08/2011	2,7
2			3227	15/09/2011	3,8
	COPASA	PTS	3272	15/10/2011	3,0
	COPASA	PIS	3332	26/11/2011	< 0,64
			3359	14/12/2011	5,7
			3393	07/01/2012	2,8
			3448	12/02/2012	3,7
			3501	19/03/2012	2,9
			3544	18/04/2012	3,9
			3034	12/05/2011	3,3
			3080	11/06/2011	< 0,64
			3149 3158	29/07/2011 04/08/2011	6,2 4,2
			3231	15/09/2011	3,3
			3285	21/10/2011	< 0,64
3	DER	PTS	3336	26/11/2011	< 0,64
			3363	14/12/2011	2,2
			3388	01/01/2012	1,6
			3452	12/02/2012	5,2
			3505	19/03/2012	3,9
			3563	30/04/2012	4,5
			3024	06/05/2011	2,1
			3079	11/06/2011	< 0,64
4			3111	05/07/2011	7,6
			3191	22/08/2011	9,8
			3230	15/09/2011	5,6
	União	PTS	3284	21/10/2011	< 0,64
	Omao	115	3335	26/11/2011	< 0,64
			3344	02/12/2011	3,6
			3387	01/01/2012	1,8
			3451	12/02/2012	4,3
			3511	25/03/2012	6,5
			3564 3052	30/04/2012	6,6
			3081	24/05/2011 11/06/2011	< 0,64
			3132	17/07/2011	< 0,64 < 0,64
			3193	22/08/2011	< 0,64
			3232	15/09/2011	< 0,64
			3293	27/10/2011	5,2
5	São Domingos	PTS	3337	26/11/2011	< 0,64
			3364	14/12/2011	0,70
			3398	07/01/2012	< 0,64
			3453	12/02/2012	4,5
			3506	19/03/2012	3,9
			3565	30/04/2012	4,1
6			3023	06/05/2011	10,4
			3078	11/06/2011	16,5
			3147	29/07/2011	16,2
			3156	04/08/2011	14,0
			3229	15/09/2011	17,5
		PTS	3290	27/10/2011	5,4
			3334	26/11/2011	< 0,64
			3361 3386	14/12/2011 01/01/2012	3,3
	Arena		3450	12/02/2012	< 0,64 8,8
			3503	19/03/2012	2,9
			3562	30/04/2012	10,5
			3027	06/05/2011	3,7
			3064	11/06/2011	< 0,64
			3151	29/07/2011	< 0,64
			3160	04/08/2011	9,4
		DN #10	3233	15/09/2011	12,4
		PM10	3269	09/10/2011	3,5
			3331	20/11/2011	3,2
			3381	26/12/2011	1,7
			2200	0.4.10.4.10.4.0	1.7
			3390	01/01/2012	1,7

			3507	19/03/2012	4,3
			3566	30/04/2012	4,9
	D		3028	06/05/2011	< 0,64
			3074	04/06/2011	< 0,64
		PTS	3134	17/07/2011	< 0,64
			3195	22/08/2011	< 0,64
			3234	15/09/2011	< 0,64
7			3279	17/10/2011	< 0,64
/	Barragem	F13	3340	26/11/2011	< 0,64
			3366	15/12/2011	< 0,64
			3437	01/01/2012	< 0,64
			3471	24/02/2012	< 0,64
			3499	15/03/2012	< 0,64
			3533	06/04/2012	< 0,64
	Santo Antônio		3055	24/05/2011	< 0,64
8			3066	15/06/2011	5,4
			3116	05/07/2011	< 0,64
			3196	22/08/2011	2,5
			3215	03/09/2011	3,1
		PTS	3280 17/10/2011	17/10/2011	0,94
		PIS	3339	26/11/2011	< 0,64
			3367	15/12/2011	< 0,64
			3392	01/01/2012	< 0,64
			3456	15/02/2012	< 0,64
			3500	15/03/2012	3,8
			3568	30/04/2012	2,3

Os teores de As no MP10 são considerados mais perigosos, uma vez que as menores partículas podem atingir níveis mais profundos do sistema respiratório.

Tabela 2. Teores médios de As (ng m⁻³) no PTS e nas partículas inaláveis (MP10) nas 8 estações de monitoramento, no período de maio de 2011 a abril 2012, em Paracatu.

#Estação	1	2	3	4	5	6-PTS	6-PM10	7	8
Média	7,2	3,8	4,4	5,7	4,4	10,2	5,1	< LQ	2,9

LQ = limite de quantificação = 0,64 ng As m⁻³. #(1) Alto da Colina, (2) COPASA, (3) DER, (4) União, (5) São Domingos, (6) Arena, (7) Barragem e (8) Santo Antônio.

5. AGRADECIMENTOS

Ao CNPq pela bolsa IC, ao CETEM pela infra-estrutura, e aos colegas Marcos Batista e Luiz D. Rocha pelo auxílio nas análises químicas.

6. REFERÊNCIAS BIBLIOGRÁFICAS

EUROPEAN Commission. *Ambient Air Pollution by As, Cd and Ni Compounds: Position* Paper. Outubro, 2001. Pág. 55-56. Disponível em: http://ec.europa.eu/environment/air/pdf/pp_as_cd_ni.pdf>. Acesso em 28 jun. 2013.

IRIS- Integrated Risk Information System. *Arsenic* (2013). Disponível em: <www.epa.gov/iris/arsenic> . Acesso em 28 jun. 2013.

MAGGS, R. A Review of Arsenic in Ambient Air in the UK. Department of the Environment, Transport and the Regions, Scottish Executive, The National Assembly for Wales. Stationery Office, London, 2000.

MATOS et al. Variabilidade espacial e temporal das concentrações de As no material particulado atmosférico em Paracatu (MG). GeoAmb. Niterói-RJ, 2013.

WORLD Health Organization Regional Office for Europe. Air Quality Guidelines: 2nd. Edition. 2000. Cap. 6.1. pág. 2. Disponível em: http://www.euro.who.int/__data/assets/pdf_file/0014/123071/AQG2ndEd_6_1_Arsenic.PDF >. Acesso em: 28 jun. 2013.