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A crescente demanda global por litio (Li) requer métodos de extragdo mais eficientes, capazes de superar a
dificil separagao do Li* de outros cations mono- e divalentes (M* e M2*). As Metal Organic Frameworks (MOFs),
especialmente a UiO-66, destacam-se como materiais promissores para membranas seletivas. Este estudo
utilizou modelagem molecular (MM) para investigar os mecanismos de separagdo idnica, considerando as
interagdes cation-MOF e cation-agua, além da influéncia da funcionalizagdo dos ligantes. Os resultados
indicaram que os M2 interagem mais fortemente com a UiO-66 e requerem maior desidratagéo, resultando em
maior penalidade energética para atravessar os poros, o que confere seletividade natural a M*. A funcionalizagéo
com grupos de alta densidade de carga negativa, como —OH (-O~), intensificou as interacdes eletrostaticas,
principalmente com M?*, reduzindo seu fluxo e ampliando a seletividade para M*. Esses achados reforcam o

potencial da MM no design racional de membranas a base de MOFs, voltadas a extragéo seletiva do litio.
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Abstract

The growing global demand for lithium (Li) requires more efficient extraction methods capable of overcoming the
challenging separation of Li* from other mono- and divalent cations (M* and M?*). Metal-Organic Frameworks
(MOFs), particularly UiO-66, stand out as promising materials for selective membranes. This study employed
molecular modeling (MM) to investigate the mechanisms of ionic separation, considering cation-MOF and cation—
water interactions, as well as the influence of ligand functionalization. The results indicated that M** ions interact
more strongly with UiO-66 and require greater dehydration, resulting in a higher energetic penalty to cross the
pores, which naturally favors selectivity toward M*. Functionalization with groups of high negative charge density,
such as -OH (-O7), enhanced electrostatic interactions, especially with M?*, reducing their flux and further
increasing selectivity for M*. These findings highlight the potential of MM for the rational design of MOF-based

membranes aimed at the selective extraction of lithium.
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1. Introdugao

A demanda global por litio (Li) vem crescendo exponencialmente, consolidando-o0 como um recurso estratégico
essencial na sociedade moderna. Esse aumento é impulsionado principalmente pelo uso em baterias
recarregaveis de ion-litio, fundamentais para veiculos elétricos e para a transigdo energética rumo a
descarbonizacdo. Além das baterias, o litio é amplamente aplicado em ligas metalicas, vidros, ceramicas,
farmacos e lubrificantes. Entre 2013 e 2024, o consumo global de litio septuplicou, passando de 30.000 para
220.000 toneladas (USGS, 2025). Proje¢des estimam que a demanda podera ultrapassar 2 milhdes de toneladas
até 2030. Esse cenédrio pressiona o aumento da producdo mundial e eleva o preco do metal, gerando

preocupagdes sobre possivel escassez no final do século XXI (GARCIA et al., 2023; HOU et al., 2021).

O Li ¢ obtido de depdsitos minerais, como o espoduménio, e de recursos aquosos, principalmente salmouras de
lagos salinos e aquiferos, que concentram cerca de 64% das reservas globais (KAYA, 2022). Ambos os métodos
apresentam desafios como alto consumo energético, elevado custo, uso intensivo de reagentes e agua doce,
além da geracédo de residuos e da dificil purificacdo, especialmente devido a presenga de magnésio (Mg*).
Outra limitag&o importante, sobretudo em tecnologias recentes como membranas seletivas, € a separagéo do Li*
de cations monovalentes como Na* e K*, cujos raios idnicos semelhantes reduzem a seletividade. Essa
dificuldade exige modificagdes estruturais nos materiais empregados para aprimorar a eficiéncia de extracéo
(GARCIA et al., 2023; HOU et al., 2021; XIAO et al., 2022).

As MOFs (Metal-Organic Frameworks) sao materiais porosos promissores para membranas seletivas, sendo a
UiO-66 amplamente estudada devido a sua alta estabilidade em &gua, poros uniformes subnanométricos e
métodos de sintese viaveis comercialmente (HOU et al., 2021; TIAN et al., 2025; XIAO et al., 2022). O principal
mecanismo de separagdo € a exclusdo por tamanho, determinada pelas janelas de poro que funcionam como
filtros de seletividade. Na UiO-66, a janela triangular é a mais restritiva, com di@metro experimental de cerca de
6,0 A, geralmente menor que o didmetro hidratado dos cations, exigindo que eles passem por desidratacdo

parcial para atravessar os poros e permitir transporte seletivo (LIU et al, 2015).

A seletividade da UiO-66 favorece cations monovalentes em relagdo aos divalentes, embora a distingao entre
monovalentes seja limitada. Para aumentar a eficiéncia da separagéo, é necessaria a modificagdo estrutural das
MOFs, por exemplo, pela introdugéo de grupos ou polimeros funcionais. Essa funcionalizagdo pode regular a

afinidade iénica e o tamanho de poro, aumentando a seletividade para o Li* (XU et al., 2020).

A modelagem molecular (MM), incluindo simulagbes quanticas e classicas, € uma ferramenta essencial para o
design racional de membranas a base de MOFs com seletividade para Li*. Essas técnicas permitem entender,
em nivel atdbmico, os mecanismos da separagéo ibnica, o papel das intera¢des cation-MOF e cation-agua no
processo e ainda o efeito de modificagdes estruturais ou funcionais das MOFs, reduzindo assim a necessidade
de multiplos experimentos de bancada (FIROOZ et al., 2022; LE et al., 2024).
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2. Objetivos
Investigar, por meio da modelagem molecular, como as interagdes cation-MOF e cation-agua, bem como a
funcionalizagdo dos ligantes, influenciam o processo de separagéo idnica na MOF UiO-66, visando contribuir

para o design racional de membranas mais seletivas para litio.

3. Métodos Computacionais

A estrutura representativa da MOF UiO-66 foi construida a partir de sua célula unitaria, obtida na CCSD (CAVKA
et al., 2010), conforme descrito em Prates e Correia (2024). Os sistemas de simulagéo continham 100 moléculas
de agua (w) em um volume cilindrico de 28 A de comprimento e raio de 16 A, no qual foi inserido o fragmento
triangular representativo do poro da UiO-66, reproduzindo um ambiente de microsolvatagdo. Os cations Li*, Na*,
Mg?* e Ca** foram posicionados a 10 A do centro geométrico do poro, e célculos de scan relaxado foram
conduzidos variando essa distancia de +10 a —10 A, em incrementos de 1 A. Em cada ponto, o cation e o
fragmento da MOF foram mantidos fixos, enquanto as moléculas de agua eram relaxadas. As energias de
interacédo do cation com o sistema MOF@éagua (Einyw-morew), Equacéo 1) foram calculadas ao longo do percurso,

bem como a interagéo do cation com 100 moléculas de agua (Einqm-w), Equagao 2).

Einr/M—M{)F(/_I\rw) = E/\/I—M[)F‘(/_I\» w (EM + EM()F'@? w) (1 )
Eint(M—w) = EM@W - (EM + Ew) (2)
Eim(M—L) = EM—L - (EM + EL) (3)

Para compreender o papel do ligante e o efeito de grupos funcionais, foram calculados os mapas de potencial
eletrostatico (MPE) e as energias de interagéo cation-ligante (Einw-0), Equacéo 3) para o ligante BDC e suas
formas dissubstituidas empregadas em MOFs derivadas (UiO-66-2NH,, UiO-66-20H e UiO-66-20CHs).
Considerando que os pontos isoelétricos das UiO-66-2NH., e UiO-66-20H séo 7,1 e 3,8, respectivamente (MO
et al., 2024), foram avaliadas as formas neutra (BDC-2NH,, BDC-20H), protonada (BDC-NH3*) e

desprotonada (BDC-20") dos ligantes, representando o efeito do pH sobre as interagdes cation—-MOF.

A montagem e visualizagdo dos sistemas foram realizadas com Packmol (MARTINEZ et al., 2009), Avogadro
(HANWELL et al., 2012), VMD (HUMPHREY; DALKE; SCHULTEN, 1996) e Mercury (MACRAE et al., 2020).
Os célculos de scan relaxado e otimizagbes dos sistemas M-w foram conduzidos com o programa xTB
(BANNWARTH, EHLERT e GRIMME, 2019), utilizando o Hamiltoniano semiempirico GFN2-xTB. As energias
Einv-mor@w) € Einqm-w) foram obtidas pela abordagem ONIOM (DFT/GFN2-xTB), com o funcional B97-3c e o
modelo de solvatagdo implicita SMD, implementados no ORCA 6 (NEESE et al., 2020). A camada de alto nivel
incluiu o cation, as 20 moléculas de agua mais préximas e os ligantes do centro do poro. As otimizagbes dos
sistemas M-L, bem como os calculos de cargas atémicas (CHELPG), também foram realizados no ORCA 6, e
os MPE foram gerados com o Multiwfn (LU e CHEN, 2012).
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4. Resultados e Discussao

4.1 Anadlise da passagem dos cations pelo poro triangular da UiO-66

Os perfis de energia de interagdo dos cétions com o sistema MOF@w (Einu-wor@w) € 0S numeros de

coordenagao (NC) considerando o raio do poro triangular da Ui0-66 (R, = 3,00 A) sdo apresentados na Figura

1a-d. A comparagao entre cations monovalentes (M* = Li* e Na*) e divalentes (M** = Mg** e Ca*) evidencia

diferengas marcantes nos perfis energéticos e no comportamento de solvatagdo. Os M* exibem perfis de Einyw-

MoF@w) Mais rasos e regulares, indicando interagdes predominantemente mediadas por moléculas de &gua, com

menor contribui¢do direta do poro. Em contraste, os M** apresentam energias muito mais negativas e oscilagdes

acentuadas ao longo da trajetoria, sugerindo interagdes fortes e pontuais com o sistema.
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Figura 1. Perfis de energia de intera¢do dos cations (a) Li*, (b) Na*, (c) Mg?* e (d) Ca?* com o sistema MOF@w

e numero de moléculas de &gua coordenadas ao cation ao longo da passagem pelo poro.

Tabela 1. Valores experimentais de entalpia de hidratag@o (AHniq, kcal mol') (SMITH, 1977), raio de hidratagéo
(Rrig, NIGHTINGALE, 1959) e da primeira camada de solvatag&o (Rsav, OHTAKI; RADNAI, 1971) (em A) e

valores calculados de energia de interagdo M-w (Eing.w)) € dos nimeros de moléculas de 4gua coordenadas a

M no Riig (NChig) € N0 Rsoiv (NCso).

AHhig EintM-w) Rhig NChid Rsolv NCsolv
-124,04 -108,10 3,82 12 2,28 4
-97,75 -80,24 3,58 8 2,50 6
-459,13 -291,99 4,28 20 2,15 6
-376,91 -268,96 4,12 15 2,70 6
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O Li* apresenta perfil de energia intermediario, variando entre -140,81 e -62,14 kcal-mol™ (Figura 1a).
No centro do poro (z = 0), a Eingw-woraw € 123,47 kcal-mol™. O NC mantém-se praticamente constante, entre
trés e quatro moléculas de &gua, indicando que o ion preserva sua primeira camada de solvatagdo durante a
travessia. Essa estabilidade reflete seu pequeno raio e alta densidade de carga, que favorecem forte afinidade
por moléculas de agua. O Na*, por sua vez, apresenta o perfil mais suave, com energias variando entre -90,75
e -32,62 kcal'mol™ (Figura 1b) e maiores flutuagdes de NC, entre uma e duas moléculas de agua nas
proximidades do poro, evidenciando maior desidratagdo. Esse comportamento estd de acordo com sua menor

energia de hidratagéo (Tabela 1).

Para M?*, observam-se valores de energia mais negativos e pogos energéticos mais profundos. O Mg
apresenta Einu-vorgw) entre 299,36 e -125,80 kcal-mol™, enquanto o Ca®* varia entre -301,35 e -111,66
kcal-mol™ (Figura 1c,d). O menor raio idnico e a maior carga dos metais alcalino-terrosos conferem maior
densidade de carga em relagdo aos metais alcalinos, resultando em energias de hidratacdo mais elevadas
(Tabela 1). Consequentemente, Mg** e Ca** exibem maiores NC e raios de hidratacdo (Rng). O Mg** sofre
reducdo gradual do NC, de 6 para 1, ao aproximar-se do poro (a partir de 5 A), acompanhada de diminuigdo
progressiva de Einw-vor@w), indicando desidratagéo energeticamente custosa. Ao sair do poro, o ion volta a se
hidratar e Ein-mor@w aumenta. O Ca?*, por sua vez, apresenta comportamento mais irregular, com NC variando
entre sete e zero moléculas de agua. No centro do poro, Eingw-voraw) € de —116,80 kcal-mol™ para o Mg** e
-133,77 kcal-mol™ para o Ca?*.

Esses resultados indicam que a interagdo com o fragmento da UiO-66 afeta menos a estrutura de solvatagéo
dos M*, sobretudo do Li*, indicando interagdes M-MOF mais fracas. J& os M** apresentam maior competi¢do
entre as interagbes M-MOF e M-w, exigindo maior desidratacdo e implicando custo energético mais alto. Assim,
a UiO-66 mostra-se seletiva para M*, cujo fluxo € favorecido em relagéo a M**. Entre os monovalentes, porém,
as diferengas sdo pequenas, reforcando que modificagbes estruturais na MOF seriam necessarias para

aumentar a seletividade para o cation desejado.

4.2. Avaliagdo das interagoes cation-ligante (M-L)

A energia de interagdo céation-ligante Eiw.) Segue a ordem Ca?* > Mg** > Li* > Na* (Figura 2). As interagdes
mais intensas ocorrem com os M?*, devido a maior densidade de carga positiva desses ions e a carga negativa
da maioria dos ligantes (Figura 3). O ligante BDC mantém-se negativamente carregado mesmo no ambiente da

Ui0-66, indicando que essa regido da MOF favorece interagdes eletrostaticas mais fortes com os cations.

Entre as regides estruturais dos ligantes, 0 anel aromatico apresenta as menores Ein(M-L) (Figura 2a), pois exibe
densidade de carga positiva ou levemente negativa, conforme indicado pela coloragéo verde-amarelada nos
MPEs (Figura 3). Assim, essa regiéo contribui pouco para a atragao dos cations. Em contrapartida, os grupos
carboxilato (-COQO~) e os grupos funcionais substituintes do anel exercem papel determinante nas variagdes da
interacdo cation-ligante (Figura 3c). Os carboxilatos representam a porgédo mais negativa e mantém o mesmo

padréo de Eix(M-L) para todos os cétions, variando apenas em intensidade (Figuras 2b e 3).

vl
vl
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A introdugdo de grupos amino (-NH) no anel aumenta a interagéo dos cations com as laterais do ligante
(Figura 2c). Entretanto, ao considerar o efeito do pH, o BDC-NHs* apresenta redugéo acentuada de Eingu.),
podendo atingir valores inferiores aos do BDC neutro. Isso ocorre porque a protonagao torna o ligante neutro: os
grupos —-NHs* cedem prétons aos —COO~, porém ainda assim o grupo lateral fica menos negativo que em BDC-
NH,, reduzindo a componente eletrostatica da interagdo. Como consequéncia, ha também diminui¢&o da Eingw-)
nas regides do anel e do carboxilato.
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Figura 3. Mapa de potencial eletrostatico e distribuicdo de carga (g, em €) no ligante 1,4-benzenodicarboxilato
(BDC), nos seus respectivos derivados dissubstituidos e no fragmento triangular da UiO-66 (BDC@MOF).

Por outro lado, a substituigdo por grupos hidroxila (-OH) aumenta a densidade de carga negativa nas laterais do
ligante, elevando a Einu-). Incluindo o efeito do pH, a forma desprotonada (-O~) torna-se ainda mais negativa,
aumentando as interagdes em todas as regides. A substituicdo por -OH (ou -O~) permite que o cation interaja
diretamente com o oxigénio (O) ou por ponte envolvendo oxigénios do carboxilato e da hidroxila (OO), sendo
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essa Ultima configuragdo energeticamente mais favorecida. A introdugéo de grupos metil (-OCHs), por sua vez,

reduz a Einw-) em todos os sitios, devido & menor densidade de carga.

A ordem geral de Eiw.) entre os ligantes € BDC-20~ > BDC-20CH; > BDC-2NH3* > BDC. Esses resultados
concordam com dados experimentais (MO et al. 2024), que apontam maior seletividade para cations
monovalentes na UiO-66-20H em relagdo a UiO-66-2NH,. O aumento da Einuy com o BDC-20~ é mais
significativo para M?*, o que dificulta seu transporte. Ja o grupo metil, embora reduza a energia de interagao,

aumenta a seletividade M*/M?* por efeito estérico, atuando como barreira fisica a passagem dos ions divalentes.

5. Conclusbes

Os resultados ajudam a elucidar os mecanismos de transporte de cations pela UiO-66, mostrando que
diferencas sutis no comportamento de M* tornam necessarios ajustes estruturais para aprimorar a separagéo
seletiva do litio. A funcionalizagdo dos ligantes, especialmente com grupos com grande densidade de carga
negativa, como OH (O), intensifica as interagOes eletrostaticas e podem modular a seletividade iénica. Esses

dados contribuem para o design racional de membranas mais eficientes para a extragdo estratégica de litio.
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