Determinação de Alumínio em Rochas por Titulometria Indireta

Danielle de Almeida Carvalho

Bolsista de Inic. Científica, Lic. Química, UFRJ

Gabriel Oliver Goncalves

Orientador, Geoquímico Ambiental, M. Sc.

RESUMO

Foi implementada uma metodologia para determinação de alumínio por titulometria indireta ácido-base em argilas. A amostra foi primeiramente dissolvida com uma mistura ácida nas proporções de 4H₂O:5HNO₃:5H₂SO₄ e o alumínio residual foi submetido à fusão e posterior dissolução ácida. À solução em

meio neutro, contendo alumínio, foi adicionado fluoreto, as hidroxilas liberadas foram tituladas com solução padronizada de HCl 0,05M. A determinação de alumínio pelo método proposto apresentou boa precisão e exatidão. Além disso, o método é simples e apresenta baixo custo e boa sensibilidade (LOD para AbO3 = 0,18%).

1. INTRODUÇÃO

Embora seja o terceiro elemento mais abundante na crosta terrestre não é fácil extraí-lo, pois só ocorre na forma de compostos (substância formada por dois ou mais elementos químicos). Está presente principalmente na forma de silicatos (feldspatos, micas, caulim, argila, etc.), bauxita (Al $_2$ O $_3$.nH $_2$ O), corindon (Al $_2$ O $_3$), rubi (Al $_2$ O $_3$ com inclusão de Cr $_2$ O $_3$), safira (Al $_2$ O $_3$ com inclusão de MnO $_2$).

Foi obtido livre pela primeira vez por Oersted, em 1825, em uma forma impura. Em 1827, Wöhler obteve o alumínio em uma forma mais pura e posteriormente Bunsen e Deville obtiveram-no praticamente puro. A criolita foi o primeiro minério empregado para a sua obtenção industrial. Atualmente, ele é extraído da bauxita que contem o metal em maiores proporções[1,2].

O processo para se obter alumínio primário é um dos que mais consome energia elétrica, já para se produzir o alumínio o secundário (a reciclagem figura-1), o consumo de energia é muito baixo comparado com o para produzir o alumínio primário. Por exemplo, para reciclar uma tonelada de alumínio gasta-se somente 5% da energia que seria necessária para produzir essa mesma quantidade de alumínio primário, ou seja, a reciclagem do alumínio proporciona uma economia de 95% da energia, quantidade suficiente para manter iluminadas 48 residências por um mês. O preco pago por tonelada de latinhas vale 35 vezes mais do que o quilo de latas de aço ou do vidro, 10 vezes mais que um quilo de papel e 6 vezes mais do que o quilo da garrafa pet. Esse processo tem uma grande importância social por beneficiar as famílias que exercem a atividade de coleta com a geração de permanente. Cooperativas de catadores. desempregados e subempregados encontram nessa atividade uma fonte de renda ou a sua complementação. Atualmente, segundo a ABAL (Associação Brasileira de Alumínio), estima-se que mais de 130 mil pessoas vivam exclusivamente da coleta de latas para a reciclagem. Para se ter uma idéia, a reciclagem de uma única latinha de alumínio economiza energia suficiente para manter um aparelho de TV ligado durante três horas.

Para se determinar alumínio total em amostras de silicatos e quando não se tem interesse em determinar sílica simultaneamente, a amostra é pré-tratada inicialmente com ácido fluorídrico. A completa dissolução é realizada normalmente com uma mistura de ácido sulfúrico e nítrico. Quando se tem interesse em se determinar simultaneamente sílica e alumínio, a amostra é normalmente dissolvida com uma mistura de ácido sulfúrico e nítrico e o resíduo insolúvel que é praticamente sílica, é separado por filtração. Em seguida, a sílica é fluorizada e determinada por diferença de massas. O resíduo restante dessa etapa é fundido, dissolvido e combinado com a solução anterior para determinação dos metais, incluindo o AI [3].

Vários métodos têm sido publicados para a determinação alumínio em solução: espectrometria de absorção atômica com chama (EAA), espectrometria de emissão com plasma indutivamente acoplado (ICP-AES), espectrometria de fluorescência de raios-X (RFX), potenciometria, gravimetria e espectrometria no UV-Visível (UV/Vis).

A determinação de Al por EAA é realizada utilizando chama de óxido nitroso e acetileno (N_2O/C_2H_2) . Esta técnica conseque determinar alumínio em

concentrações que variam de ppm a %. Para se determinar altas concentrações é utilizado o procedimento de diluições sucessivas. Em ambas as faixas de concentração os resultados são satisfatórios[3,4].

A técnica de ICP consegue também determinar baixos níveis de Al com a vantagem de ter uma faixa de linearidade bem mais ampla, podendo assim, determinar concentrações mais elevadas sem usar o recurso de diluição da amostra[4].

A técnica de FRX pode analisar Al em baixas e altas concentrações com boa reprodutibilidade, principalmente quando a matriz é conhecida, já que, o equipamento é calibrado com padrões que apresentam características semelhantes ao da amostra. Além disso, possui a vantagem de não necessitar de dissolução da amostra[3].

As técnicas de potenciometria e gravimetria [3,5] são normalmente aplicadas às amostras contendo AI em concentrações na faixa de % e UV/Vis para baixas concentrações[6].

FIGURA-1. Ciclo da reciclagem do alumínio

2. OBJETIVO

Implementar e otimizar uma metodologia simples, precisa e exata para determinação de alumínio em argilas.

3. MATERIAIS E MÉTODOS

3.1. REAGENTES, SOLUÇÕES E AMOSTRAS

Todos os reagentes utilizados foram de grau analítico (P.A.). Toda a água utilizada foi previamente destilada e deionizada. Foram utilizadas as seguintes soluções:

- a) mistura ácida: 4 partes de água, 5 partes de ácido nítrico (HNO_3) e 5 partes de ácido sulfúrico (H_2SO_4)
- b) ácido sulfúrico (H₂SO₄) 1M
- c) ácido fluorídrico (HF)
- d) ácido clorídrico (HCI) 0,05 M, 0,5M e 1M
- e) hidróxido de sódio (NaOH) 1M
- f) gluconato de sódio (C₆H₁₁NaO₇) 1M
- g) fluoreto de sódio (NaF) 5M
- h) pirosulfato ou bissulfato de potássio ou sódio ?(K,Na)₂S₂O₇ / (K,Na) HSO₄?

i) solução-estoque de 1000 mg L-1 de Al, preparada a partir do concentrado de uma ampola Titrisol, Merck.

3.2. PROCEDIMENTO

3.2.1. Dissolução ácida da amostra

Em um bécher de 400mL contendo 0,5 g de amostra, pesada com precisão de 0,1mg, foram adicionados 50mL da solução de nistura ácida (item 3.1). Foi colocado um vidro de relógio raiado sobre o bécher e levado à chapa aquecedora. Ao iniciar o desprendimento intenso de fumos brancos (SO₃), o aquecimento foi mantido no mínimo por mais 60 minutos. Deixou-se esfriar e adicionaram-se 100mL de HCl 1M, lavando-se o vidro de relógio com essa solução. Cobriu-se o bécher com vidro de relógio liso e aqueceu-se novamente para solubilizar totalmente os sais solúveis. Filtrou-se em papel de filtro de média porosidade e o filtrado foi recolhido em balão volumétrico de 500mL. Lavou-se bem o bécher e o papel de filtro com HCl 0,5M e, em seguida, com água quente. O filtrado continha Al solúvel enquanto que no papel de filtro ficaram retidos substâncias insolúveis, tais como sílica e Al residual

3.2.2. Dissolução de alumínio residual

Transferiu-se o papel de filtro para um cadinho de platina, carbonizou-se o papel inicialmente em temperatura branda e queimou-se em forno mufla à 950 ? 50°C por 60 minutos. Retirou-se da mufla e deixou-se esfriar. Adicionaram-se 2 gotas de H_2SO_4 concentrado, 10 mL de HF e aqueceu-se a mistura até eliminar todo HF. Adicionaram-se mais 5mL de HF e aqueceu-se até secura total. O cadinho foi calcinado à 900 ? 50°C por 10 minutos, deixou-se esfriar e fundiu-se o resíduo com 2,00g de $K_2S_2O_7$ ou KHSO $_4$. Em seguida, o resíduo foi solubilizado com 25mL de H_2SO_4 1M . Essa solução foi misturada àquela obtida no item 3.2.1 e transferida para balão volumétrico de 500mL. O volume foi ajustado com água.

3.2.3. Titulação indireta do alumínio

Transferiu-se uma alíquota adequada (50 mL) para um bécher, e o volume foi completado a 100mL. Adicionaram-se 10mL de $C_6H_{11}NaO_7$ 1M para complexar os hidróxido formados durante a neutralização da solução que vai

ser determinado o alumínio (equação 1) e 5 gotas de fenolftaleína (indicador). Ao adicionar a fenolftaleína não foi observada mudança na coloração da solução o que indica que o meio estava ácido. Adicionou-se então, gota a gota, uma solução de NaOH 1M até cor rósea permanente. Em seguida, o meio foi neutralizado com uma solução de HCl 0,05M. Adicionaram-se 30mL de NaF 5M e as hidroxilas liberadas foram tituladas com HCl 0,05M, medindo-se o volume gasto.

3.2.4. REAÇÕES

As reações podem ser representadas pelas equações 1, 2 e 3[5].

$$Al_2(SO_4)_3 + 6 NaOH (C6H11NaO7)$$
 2 AI(OH)₃ + 3Na₂SO₄ (1)

$$AI(OH)_3 + 3NaF + 3H_2O$$
 ? $AIF_3 + 3NaOH$ (2)

$$3 \text{ NaOH} + 3 \text{ HCI} ? 3 \text{ NaCI} + 3 \text{ H}_2\text{O}$$
 (3)

3.2.5. CÁLCULOS

A determinação de Al em % foi calculada conforme a expressão:

%Al₂O₃ ? <u>1,6993? M₁? V₁? V₂</u>

 $V_{3 \times} m$

onde:

M₁ = molaridade da solução de HCl

V₁ = volume da solução de HCl

V₂ = volume do balão volumétrico

V₃ = volume da alíquota da solução-amostra

m = massa da amostra

3.2.6. LIMITE DE DETECÇÃO

O limite de detecção (LOD) do método foi determinado utilizando-se a equação: LOD = x + k s, onde x é a média do branco, k = 3 e s é o desvio padrão das medidas do branco [7]. Foram realizadas 10 medidas do branco, e o LOD encontrado para a determinação de Al_2O_3 foi igual a 0,18%.

4. RESULTADOS E DISCUSSÃO

A tabela 1 apresenta os resultados obtidos. Para o padrão certificado de argila IPT-42 foi encontrado o teor médio de Al_2O_3 (32,2%) e desvio padrão (SD = 0,1%) igual ao valor certificado para o mesmo número de determinações (n=7). O método quando aplicado a duas amostras de argila apresentou também boa precisão (SD < 0,08 %).

TABELA-1. Determinação de Alumínio em amostras de argila

Amostra	Concentração de Al ₂ O ₃ (%)		
_	média ± SD		
	Esperada	Encontrada	nº determinações
IPT - 42	32,2 <u>+</u> 0,1	32,2 <u>+</u> 0,1	7
Α		$36,2 \pm 0,08$	5
В		$36,6 \pm 0,03$	5

5. CONCLUSÕES

A determinação de alumínio pelo método proposto apresentou boa precisão (SD < 0,1%), exatidão e sensibilidade (LOD para Al_2O_3 = 0,18%). Além disso, o método é simples, rápido e com baixo custo.

A determinação de alumínio pelo método proposto, pode ser aplicado para qualquer material sem prejudicar, na precisão e exatidão, se a metodologia aplicada para a digestão da amostra for condigente com o tipo de mineral que compõe a rocha.

4. BIBLIOGRAFIA

- 1-http://www.merckquimica.com.br/quimica/tpie/al_fr.htm."Descoberta, Ocorrência, Propriedades guímica e físicas".
- 2-Leprevost, A. (1975) Química Analítica dos Minerais, Rio de Janeiro: Livros Técnicos e Científicos Editora S.A., pp. 331.
- 3-Johnson, W.M. and Maxwell J.A. (1981) Rock and Mineral Analysis., vol.27, Second Edition. A Wiley-Intercience Publication pp. 269, 284, 355 357.
- 4-Ewing, G. W. (1998) Métodos Instrumentais de Análise Química., vol I ,6ª Ed., Editora Edgard Blücher Ltda.
- 5-Furman, N. H (1962) Standard Methods of Chemical Analysis., Sixth Edition.Vol. I, Robert E. Krieger Publishing Co., pp 40 82.
- 6-Snell, F.D. and Snell, C.T. (1959) Toronto: Colorimetric Methods of Analysis., vol IIA. D. Van Nostrand Co., Inc. pp 156 187.
- 7-Eckschlager, K. (1969) Errors, Measurement and Results in Chemical Analysis, Van Nostrand Reinhold Co., London, pp 129.